瞧实验室里的“机器化学家”

时间: 2024-07-23 05:16:44 |   作者: 钕铁硼

  猜测、尝试、纠错,再猜测、再尝试……过去150多年里,传统的化学研究范式深度依赖“试错法”,其局限性使得物质创制的周期长、成本高,难以实现高效、节能。

  在中科院精准智能化学重点实验室主任李震宇看来,就是把东西放进去,想让它转化成什么,就能转化成什么,同时这样的一个过程中不会产生其他不想要的东西。“这就要求整个化学研究做到设计精准,中间所有过程是透明的,机理是清楚的,过程是可控制的。”

  改变已发生——在中国科学技术大学,一台名叫“小来”的机器人,正在代替人类化学家做实验,它能将传统历时约1400年的工作量缩短到5周。

  这是以中国科学技术大学李震宇、姚宏斌、江俊等为代表的科研人员,深耕精准智能化学领域,推动科研范式变革取得的成果之一。

  今年1月,以中国科学技术大学为依托单位的精准智能化学重点实验室获中科院批准建设。据李震宇介绍,实验室正在发展先进的理论计算方式,通过理论计算模拟得到大量精准的计算数据,同时通过实验精准表征,得到大量精准的实验数据,在此基础上学习这一些数据,实现“从精准到智能”。在化学智能的助力下,实验室实现对反应路径与材料物性的精准调控,完成“从智能到精准”的闭环,大幅度的提高化学研究的效率。

  “如果有很多的数据,计算机自己就可以找出其中的关联,不需要由人先总结一个规律,再由实验或者计算加以验证,使研究速度大幅度提高。”李震宇打了个比方,这是从步行到坐火箭的速度提升,将使以前的很多“不可能”变成“可能”。

  以潜力巨大的高熵化合物催化剂为例:获得最优配方需要测试极其庞大的化学配比组合,如果依赖传统研究范式,这一过程在大多数情况下要1400年,而“机器化学家”发挥数据驱动和智能优化的优势,从55万种可能的金属配比中找出最优的高熵催化剂,仅需要5周时间。

  “但现在也存在一些难点,最大的问题是数据不统一。”中国科学技术大学化学与材料科学学院教授江俊表示,机器人能够阅读海量论文来获取数据,但由于实验室条件不同,测量标准也不一样,数据常常会出现冲突。这可能会引起机器人在阅读学习的过程中出现“误解”。

  对此,江俊团队想出了一个新思路——用理论模拟大数据产生预训练模型,再依托应用实践小数据做校准,建立面向复杂体系的“理实交融”模型。“我们也可以把化学知识、物理知识等底层知识数据化、代码化、迁移化,就非常有可能形成智能化的新研究范式。”

  在中国科学技术大学“机器化学家”实验室的大屏幕上,一个复杂实验的流程已经被设定好,液体进样站、磁力搅拌站、烘干工作站等工作站被一一连接起来。“小来”依次到各工作站做相关操作,机械臂抓试管、称量、搅拌、离心、烘干……每做完一次实验,数据结果都会自动归档,累积到某些特定的程度后进行自动分析。

  “这个实验的任务是进行芬顿催化剂配方的优化。”其实,借助机器人完成化学实验,已有先例。2020年,利物浦大学研制出世界首个机器人化学实验员,一周内可以研究1000种催化剂配方,相当于一个博士生4年的工作量。

  “对方团队的AI化学家没有物理模型,没有预见性,不能提出任何科学假设,而拥有‘大脑’的‘小来’可以。”在江俊看来,这样的形式能让机器人真正用智能决策去做实验,跳出了经验主义的陷阱,实现全流程智能化的闭环。

  “它首先‘能学’,即模型漫无目的地学习化学知识,阅读海量文献;同时‘能想’,即调用底层的物理模型,结合大数据与人工智能技术进行思考和模拟计算;最终‘能做’,即自主完成实验验证,实现科学方法的闭环。”江俊说,它是具备科学思维的“机器化学家”。

  如今,“小来”已经大显身手。中国科学技术大学邹纲团队筛选光学活性薄膜材料时,为找到目标材料,需要混合多种分子并且控制薄膜厚度、应力、灰度等工艺条件,其可能性有上百万种。团队努力了10年,终于将不对称因子提高到了1.2,但离理论极限2.0还有非常大的差距。借助“小来”,他们在两个月内找到了不对称因子1.95所需的工艺条件,高度逼近理论极限。

  “我们的目标是建成‘机器化学家’大科学装置,在一整栋大楼里,布置上百个机器人、上千个智能化学工作站,真正解放化学家的双手,加快新化学品和新材料的研发创制。”江俊说。

  “人类肉眼只能看到大致宏观的现象,通过光谱的精细测量,机器人能把微观信息理解清楚,预测很多金属材料的催化活性。”谈及下一步计划,江俊表示,将为机器人安装红外探头和拉曼探头,使其既有红外视觉又有可见光视觉,可以像真正的化学家一样,闻到化学品的气味,看到化学品的颜色,感知温度、湿度和压力。

  “第四次科技革命的驱动力,必然是机器智能,其途径将是AI for Science。”江俊说,中国科大的AI for Science不仅赋予了机器人科学思维,还可以将其大范围迁移应用。

  “有人质疑我说,人家是做颠覆性技术,你是颠覆同事。其实不是这样的。”江俊说,一个好的工具会带来很多可能性,科研人员会借此发现更多理论。