华体会竞猜
科研神器 带你了解X射线衍射仪(XRD)

时间: 2024-03-23 12:51:23 |   作者: 华体会竞猜

  X射线衍射(X-RayDiffraction)利用X射线在晶体中的衍射现象来获得衍射后X射线信号特征,经过处理得到衍射图谱。通过对材料来X射线衍射,分析其衍射图谱,获得材料的成分、材料内部原子或分子的结构或形态等信息的研究手段。下面就让我们来简要的了解下XRD的原理及应用和分析方法。

  XRD非常适合于晶态物质的物相分析。晶态物质组成元素或基团如不相同或其结构有差异,它们的衍射谱图在衍射峰数目、角度位置、相对强度次序以至衍射峰的形状上就显现出差异。

  在X射线衍射仪的世界里, X射线发生系统(产生X射线)是“太阳”,测角及探测系统(测量2θ和获得衍射信息)是其“眼睛”,记录和数据处理系统是其“大脑”,三者协同工作,输出衍射图谱。在三者中测角仪是核心部件,其制作较为复杂,直接影响实验数据的精度。下面是X射线衍射仪和测角仪的结构简图。

  X射线同无线电波、可见光、紫外线等一样,本质上都属于电磁波,只是彼此之间占据不同的波长范围而已。

  X射线cm之间。X射线分析仪器上通常使用的X射线源是X射线管,这是一种装有阴阳极的线),在管子两极间加上高电压,阴极就会发射出高速电子流撞击金属阳极靶,由此产生X射线。当X射线照射到晶体物质上,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构紧密关联不同的晶体物质具有自己独特的衍射样,这就是X射线衍射的基本原理。

  当一个外来电子将K层的一个电子击出成为自由电子(二次电子),这是原子就处于高能的不稳定状态,必然自发地向稳态过渡。此时位于外层较高能量的L层电子可以跃迁到K层。能量差ΔE=EL-EK=hν将以X射线的形式放射出去,其波长λ=h/ΔE必然是个仅仅取决于原子序数的常数。这种由L→K的跃迁产生的X射线我们称为Kα辐射,同理还有Kβ辐射,Kγ辐射。不过应当知道离开原子核越远的轨道产生跃迁的几率越小,所以高次辐射的强度也将越来越小。

  x射线的波长和晶体内部原子面之间的间距相近,晶体可当作X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析衍射结果,便可获得晶体结构。

  以上是1912年德国物理学家劳厄(M.von Laue)提出的一个重要科学预见,随即被实验所证实。1913年,英国物理学家布拉格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功的测定了NaCl,KCl等晶体结构,还提出了作为晶体衍射基础的著名公式——Bragg方程:2dsinθ=nλ(d为面间距,θ为衍射角)。

  对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在XRD图谱上就是具有不一样的衍射强度的衍射峰。对于非晶体材料,由于其结构不存在晶体结构中原子排列的长程有序,只是在几个原子范围内存在着短程有序,故非晶体材料的XRD图谱为一些漫散射馒头峰。

  1. 做 XRD 有什么用途,能看出其纯度?还是能看出其中含有某种官能团?

  X射线照射到物质上将产生散射。晶态物质对X 射线产生的相干散射表现为衍射现象,即入射光束出射时光束没有被发散但方向被改变了而其波长保持不变的现象,这是晶态物质特有的现象。

  绝大多数固态物质都是晶态或微晶态或准晶态物质,都能产生 X 射线衍射。晶体微观结构的特征是具有周期性的长程的有序结构。晶体的 X 射线衍射图是晶体微观结构立体场景的 一种物理变换,包含了晶体结构的全部信息。用少量固体粉末或小块样品便可得到其 X 射线衍射图。

  XRD(X 射线衍射)是目前研究晶体结构(如原子或离子及其基团的种类和位置分布,晶胞 形状和大小等)最有力的方法。

  XRD非常适合于晶态物质的物相分析。晶态物质组成元素或基团如不相同或其结构有差异,它们的衍射谱图在衍射峰数目、角度位置、相对强度次序以至衍射峰的形状上就显现出差异。因此,通过样品的 X 射线衍射图与已知的晶态物质的 X 射线衍射谱图的对比分析便能够实现样品物相组成和结构的定性鉴定;通过对样品衍射强度数据的分析计算,能够实现样品物相组成的定量分析;

  XRD 还可以测定材料中晶粒的大小或其排布取向(材料的织构)...等等,应用面十分普遍、 广泛。

  2. 如何由XRD 图谱确定所做的样品是准晶结构?XRD 图谱中非晶、准晶和晶体的结构怎么严格区分?

  在衍射仪获得的 XRD 图谱上,如果样品是较好的晶态物质,图谱的特征是有若干或许多个一般是彼此独立的很窄的尖峰(其半高度处的2θ宽度在 0.1°~0.2°左右,这一宽度可以视为由实验条件决定的晶体衍射峰的最小宽度)。如果这些峰明显地变宽,则可以判定 样品中的晶体的颗粒尺寸将小于 300nm,可以称之为微晶。晶体的 X 射线衍射理论中有一个Scherrer公式,能够准确的通过谱线变宽的量估算晶粒在该衍射方向上的厚度。

  非晶质衍射图的特征是:在整个扫描角度范围内(从2θ 1°~2°开始到几十度)只观察到被散射的 X 射线强度的平缓的变化,其间可能有一到几个最大值;开始处因为接近直射光束强度较大,随着角度的增加强度迅速下降,到高角度强度慢慢地趋向仪器的本底值。

  从 Scherrer 公式的观点看,这个现象可以视为由于晶粒极限地细小下去而导致晶体的衍射峰极大地宽化、相互重叠而模糊化的结果。晶粒细碎化的极限就是只剩下原子或离子这些粒子间的近程有序了,这就是我们所设想的非晶质微观结构的场景。非晶质衍射图上的一个最大值相对应的是该非晶质中一种常发生的粒子间距离。

  介于这两种典型之间而偏一些非晶质的过渡情况便是准晶态了。

  3. 在做X射线衍射时,如果用不同的靶,例如用铜靶或者 Cr 靶,两者的谱图会一样吗?如果不同的话,峰的位置和强度有啥变化吗?有规律吗?

  不同的靶,其特征波长不同。衍射角(又常称为 Bragg 角或2θ角)决定于实验使用的波长(Bragg 方程)。使用不相同的靶也就是所用的 X 射线的波长不同,根据 Bragg 方程,某一间距为 d 的晶面族其衍射角将不同, 各间距值的晶面族的衍射角将表现出有规律的改变。因此,使用不相同靶材的X射线管所得到的衍射图上的衍射峰的位置是不相同的,衍射峰位置的变化是有规律的。

  而一种晶体自有的一套d值是其结构固有的、可当作该晶体物质的标志性参数。因此,不管使用何种靶材的 X 射线管,从所得到的衍射图获得的某样品的一套d值,与靶材无关。衍射图上衍射峰间的相对强度主要决定于晶体的结构,但是由于样品的吸收性质也和入射线的波长有关。因此同一样品用不同靶所取得的图谱上衍射峰间的相对强度会稍有差别,与靶材有关。

  如果你的图能找到对应的粉末衍射数据卡,那么问题就简单了。多数的粉末衍射数据卡上面都给出了各衍射线的衍射指标,也就不难得知对应的晶面了。

  如果是未知晶体结构的图,就需要求解各衍射线的衍射指标,这一步工作叫做衍射图的指标化。如自己解决需要具备基础的晶体学知识,然后学会一两个指标化的工具软件(如 treaor90)进行尝试。

  5. 对于正交晶系的晶胞参数,其中 a、b、c 代表晶胞的三个棱的长度。但我不清楚如何定义 a、b、c 的方向,也就是说按照什么依据确定这三条棱的方向?是否有明确的规定还是能任意自定义?

  一般来说可以用 a b c 的定向原则,其实,用什么方向都可以,它们能通过矩阵来转换。

  晶胞中的 a,b,c,分别是三个晶轴方向上的单位平移向量的长度,称为轴长,不是三个棱的长度。轴长符号也常用 a0,b0,c0 表示。轴长单位常用Å(埃,Angstrom) 或纳米(nm)。在晶体结构中没有棱这样一种说法,只有晶体坐标系,而这个坐标系是用 a,b,c,α,β,γ 六个参数来表示的,α,β,γ 分别代表三个轴间的夹角。而晶棱是指晶体的外形的棱边。所以说a、b、c 代表晶胞的三个棱的长度是错误的。

  6. 如何计算晶胞体积?比如说我想计算二氧化锆四方晶相的晶胞体积,甚至是各个晶胞参数, 怎么用这个软件来具体处理一下呢?

  首先,你要有相应的晶体学方面的知识。这些软件是为我们处理一些晶体学上的一些问题服务,所以,你不能抛开晶体学去使用软件。

  有了一些必要的晶体学知识之后,你再去学习 使用这一些软件,这样你才能看懂 help 里的内容。对于你现在所讲的这个晶胞体积的问题, 实际上也就是晶胞参数精确测定的问题,因为晶胞参数精确测定了之后,晶胞体积自然就知道了。

  7. 有什么软件能根据分数坐标画出晶体的空间结构?就是有八面体或者四面体的那种。

  根据晶体的结构结构数据,用 diamond 或 atoms 等专业的晶体结构绘图软件便可画出晶体的空间结构。

  一般来说晶体沿短轴方向生长速度快 ,垂直于长轴方向的晶面密度较大,从能量的角度说,当晶体生长时,这样的格位更稳定一些。

  做单晶 X-射线衍射才能得到原子的坐标。除了四圆外,CCD 也可进行单晶 X-射线. 如何根据 X 射线衍射数据计算晶粒尺寸晶格常数和畸变,用什么理论和公式?

  根据衍射峰的峰形数据可以计算晶粒尺寸晶格常数和畸变。在衍射峰的宽化仅由于晶粒的细小产生的情况下,根据衍射峰的宽化量用 Scherrer 公式便可以估算晶粒在该衍射方向上的厚度。